Inquiry, Discovery, Inquiry

The feature called Maskelyne is one of many newly discovered young volcanic deposits on the Moon. Called irregular mare patches, these areas are thought to be remnants of small basaltic eruptions that occurred much later than the commonly accepted end of lunar volcanism, 1 to 1.5 billion years ago. (Image Credit: NASA/GSFC/Arizona State University)

This is why NASA rocks:

NASA’s Lunar Reconnaissance Orbiter (LRO) has provided researchers strong evidence the moon’s volcanic activity slowed gradually instead of stopping abruptly a billion years ago.

Scores of distinctive rock deposits observed by LRO are estimated to be less than 100 million years old. This time period corresponds to Earth’s Cretaceous period, the heyday of dinosaurs. Some areas may be less than 50 million years old. Details of the study are published online in Sunday’s edition of Nature Geoscience.

“This finding is the kind of science that is literally going to make geologists rewrite the textbooks about the moon,” said John Keller, LRO project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Variations of a blue pigment were developed at Oregon State University. (Photo: Mas Subramanian)Science as a career is, to a certain degree, a form of job security. That is, while one might argue the idea of job security through perpetuation of the problem in certain political argumentation, the reality is that you don’t need to do that with science. That is to say, when you make a scientific discovery, you also raise a million new questions for scientists to answer.

No, really. Did you hear about the time all of five years ago that scientists at Oregon State University accidentally created a new shade of blue?

____________________

NASA. “Release 14-284: NASA Mission Finds Widespread Evidence of Young Lunar Volcanism”. NASA.gov. 12 October 2014.

Chang, Kenneth. “By Happy Accident, Chemists Produce a New Blue”. The New York Times. 23 November 2009.

Mission: Mars—MAVEN Draws Nigh

NASA, via Facebook:

At 8 pm EDT today, MAVEN will be at a distance of 205,304,736 km (127,570,449 miles) from Earth with an Earth-centered velocity of 27.95 km/s (17.37 mi/s or 62,532 mph) and a Sun-centered velocity of 22.29 km/s (13.58 mi/s or 48,892 mph). We are now just 17 days from Mars orbit insertion on September 21st.

NASA's MAVEN satellite approaches Mars.Having traveled a total of 678,070,879 km (421,332,902 mi) in its heliocentric transfer orbit, the MAVEN spacecraft has now covered ~95% of its total journey from Earth to #Mars.

The spacecraft is currently at a distance of 4,705,429 km (2,923,818 mi) from Mars, and 215,446,454 km (133,872,220 mi) from the Sun. One-way light time to the #MAVEN spacecraft from Earth is 11 minutes and 24 seconds.

All navigation solutions continue to produce trajectory arrival predictions that ensure a successful transition to MAVEN’s required science orbit.

This is the sort of thing that we ought to be getting excited about. The MAVEN mission is awesome.

Continue reading

Nothing to See Here: Titanian Clathrate Edition

NASA would like your attention long enough to explain a thing or two about how—

—absolutely cool the Cassini-Huygens mission really is.

The NASA and European Space Agency Cassini mission has revealed hundreds of lakes and seas spread across the north polar region of Saturn’s moon Titan. These lakes are filled not with water but with hydrocarbons, a form of organic compound that is also found naturally on Earth and includes methane. The vast majority of liquid in Titan’s lakes is thought to be replenished by rainfall from clouds in the moon’s atmosphere. But how liquids move and cycle through Titan’s crust and atmosphere is still relatively unknown.

A recent study led by Olivier Mousis, a Cassini research associate at the University of Franche-Comté, France, examined how Titan’s methane rainfall would interact with icy materials within underground reservoirs. They found that the formation of materials called clathrates changes the chemical composition of the rainfall runoff that charges these hydrocarbon “aquifers.” This process leads to the formation of reservoirs of propane and ethane that may feed into some rivers and lakes.

And it doesn’t stop there.

Continue reading

OCO Hits Orbit

OCO-2 Liftoff

Say hello to OCO.

OCO-2, that is, the Orbiting Carbon Observatory 2.

NASA’s Orbiting Carbon Observatory-2, or OCO-2, is expected to provide insight into how the planet adjusts to the increased production of carbon dioxide from a vantage point in orbit that will allow it to take readings on a scale never achieved before.

Technicians and engineers work with the OCO-2 spacecraft during processing inside a facility at Vandenberg Air Force Base in California.  (NASA/USAF 30th Space Wing)While ground stations have been monitoring carbon dioxide concentrations, OCO-2 will be the first spacecraft to conduct a global-scale reading over several seasons. The spacecraft is expected to produce detailed readings to provide regional sources of carbon dioxide as well as sinks for the greenhouse gas.

“There’s quite a lot of urgency to see what we can get from a satellite like OCO-2,” said David Crisp, the science team lead for the mission.

The spacecraft flew into orbit aboard a United Launch Alliance Delta II rocket launched from Vandenberg Air Force Base in California. The July 2 liftoff came at 5:56 a.m. Eastern time, 2:56 Pacific time. The hexagonal spacecraft is about 6 feet long and 3 feet in diameter and weighs 985 pounds. The Delta II first stage’s single liquid-fueled engine ignited moments before the three solid-fueled boosters roared to life to catapult the rocket and spacecraft off the pad toward space.

Continue reading

A Distant Glimpse of Uranus

JPL PIA17178 (detail)Last month, Cassini got its first-ever glimpse of Uranus:

NASA’s Cassini spacecraft has captured its first-ever image of the pale blue ice-giant planet Uranus in the distance beyond Saturn’s rings.

The planets Uranus and Neptune are sometimes referred to as “ice giants” to distinguish them from their larger siblings, Jupiter and Saturn, the classic “gas giants.” The moniker derives from the fact that a comparatively large part of the planets’ composition consists of water, ammonia and methane, which are typically frozen as ices in the cold depths of the outer solar system. Jupiter and Saturn are made almost entirely of hydrogen and helium, with smaller percentages of these ices.

When this view was obtained, Uranus was nearly on the opposite side of the sun as seen from Saturn, at a distance of approximately 28.6 astronomical units from Cassini and Saturn. An astronomical unit is the average distance from Earth to the sun, equal to 93 million miles (150 million kilometers). At their closest, the two planets approach to within about 10 astronomical units of each other.

Just to be clear, all those AUs add up to just under 4.3 billion kilometers (2.66b miles).

____________________

Dyches, Preston and Steve Mullns. “Cassini Spies the Ice-Giant Planet Uranus”. Jet Propulsion Laboratory. May 1, 2014.

NASA/JPL-Caltech/Space Science Institute. “PIA17178: Blue Orb on the Horizon”. Photojournal. May 1, 2014.

Cassini: Cosmic Gestation?

File under, And we are so amazed ….

JPL explains:

Say hello to Peggy.NASA’s Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet’s known moons.

Images taken with Cassini’s narrow angle camera on April 15, 2013, show disturbances at the very edge of Saturn’s A ring — the outermost of the planet’s large, bright rings. One of these disturbances is an arc about 20 percent brighter than its surroundings, 750 miles (1,200 kilometers) long and 6 miles (10 kilometers) wide. Scientists also found unusual protuberances in the usually smooth profile at the ring’s edge. Scientists believe the arc and protuberances are caused by the gravitational effects of a nearby object. Details of the observations were published online today (April 14, 2014) by the journal Icarus.

Yes, you read that correctly.

Continue reading

Look Ahead: Cassini “Proximal” Mission

JPL-ProximalBanner690w
First, there was Equinox. And then came Solstice. Ever faithful, the Cassini probe continues to defy even the wildest expectations at its launch in 1997. And now, NASA is asking for public participation in preparing the spacecraft for its final mission:

Starting in late 2016, the Cassini spacecraft will repeatedly climb high above Saturn’s north pole, flying just outside its narrow F ring. Cassini will probe the water-rich plume of the active geysers on the planet’s intriguing moon Enceladus, and then will hop the rings and dive between the planet and innermost ring 22 times.

JPL-CassiniProximalMission-1Because the spacecraft will be very close to Saturn, the team has been calling this phase “the proximal orbits.” But they think someone out there can conjure up a cooler name. Here’s where you come in: you can choose your faves from a list already assembled, or you can submit your own ideas (up to three). The big reveal for the final name will be in May 2014.

This naming contest is part of the 10-year anniversary celebration. The mission will mark a decade of exploring Saturn, its rings and moons on June 30 PDT (July 1 EDT).

The name game is already underway. And they’ve already released an awesome trailer in advance of Cassini’s astounding swan song.

No, really, watch the trailer.

This is going to be so cool.

Cassini’s last mission could well be the inspiration of our next generation of scientists. It really is all that.

Linkadelica

NASA-2014-RadiationStripes-detail

Might we suggest some light, enlightening reading?

Linden-2014-FermiGC-detail-smDark matter?

• Or, maybe, zebra stripes around planet Earth?

• Perhaps contemplating the multiverse?

• Or puzzling over the “strangest magma on Earth”? How about extraterrestrial volcanoes?

• Would you believe the Permian-Triassic extinction was caused by microbes?

• Was that whole skydiver and meteorite thing true?

The Enceladus Deep

Our love affair with Enceladus grows deeper:

PIA18071A substantial ocean most likely exists beneath the icy surface of Saturn’s diminutive moon Enceladus, raising the possibility that primitive forms of extraterrestrial life exist in its briny depths.

The ocean lies between the moon’s rocky core and a layer of thick ice, and is estimated to be about the size of Lake Superior. That’s large for a moon that is only 310 miles (500 kilometers) in diameter and could fit within the borders of Arizona.

In our solar system, the only other moon known to have similar contact between liquid water and rock is Jupiter’s Europa. Both the rock and the water are considered to be essential for the chemistry that could, over eons, turn nonliving matter into living entities.

“The main implication of our work is that there are potentially habitable environments in our solar system that are entirely unexpected,” said Luciano Iess, an aerospace engineer at the Sapienza University of Rome and lead author on the study published Thursday in the journal Science.

(Kaufman)

The essential question is actually a matter of opinion, sort of: How important is this?

Continue reading

Dark Flight

Dark flightIf we told you what you’re looking at in this picture, you wouldn’t believe us. Therefore, we’ll have Nancy Atkinson explain:

It sounds like a remarkable story, almost unbelievable: Anders Helstrup went skydiving nearly two years ago in Hedmark, Norway and while he didn’t realize it at the time, when he reviewed the footage taken by two cameras fixed to his helmet during the dive, he saw a rock plummet past him. He took it to experts and they realized he had captured a meteorite falling during its “dark flight” — when it has been slowed by atmospheric braking, and has cooled and is no longer luminous.

Yes, really.

(Via S.L., with many thanks. Photo credit: Anders Helstrup.)