NASA Van Allen Mission Finds Another Line of Planetary Defense

A cloud of cold, charged gas around Earth, called the plasmasphere and seen here in purple, interacts with the particles in Earth's radiation belts — shown in grey— to create an impenetrable barrier that blocks the fastest electrons from moving in closer to our planet. (Image Credit: NASA/Goddard)

Ozone hole got you down?α Maybe climate change is bringing just a bit too much sunshine and wrecking the grapes in your favorite wine?β Would you cheer up if we told you it could be worse?

Meanwhile, it is hard to imagine the private sector figuring certain things just for the sake of knowing. But, yes, it turns out that things really could be worse.

Two donuts of seething radiation that surround Earth, called the Van Allen radiation belts, have been found to contain a nearly impenetrable barrier that prevents the fastest, most energetic electrons from reaching Earth.

The Van Allen belts are a collection of charged particles, gathered in place by Earth’s magnetic field. They can wax and wane in response to incoming energy from the sun, sometimes swelling up enough to expose satellites in low-Earth orbit to damaging radiation. The discovery of the drain that acts as a barrier within the belts was made using NASA’s Van Allen Probes, launched in August 2012 to study the region. A paper on these results appeared in the Nov. 27, 2014, issue of Nature magazine.

“This barrier for the ultra-fast electrons is a remarkable feature of the belts,” said Dan Baker, a space scientist at the University of Colorado in Boulder and first author of the paper. “We’re able to study it for the first time, because we never had such accurate measurements of these high-energy electrons before.”


The more we understand about how the planet protects us against the Universe at large, the more we can learn about how to protect the planet against ourselves.

Pretty straightforward, that. But if you would like to know more about the Van Allen probes, there’s a mission page for that.


α Yes, that still exists.

β A genuine challenge that is already here.

Fox, Karen C. “NASA’s Van Allen Probes Spot an Impenetrable Barrier in Space”. NASA Goddard Space Flight Center. 26 November 2014.

OCO Hits Orbit

OCO-2 Liftoff

Say hello to OCO.

OCO-2, that is, the Orbiting Carbon Observatory 2.

NASA’s Orbiting Carbon Observatory-2, or OCO-2, is expected to provide insight into how the planet adjusts to the increased production of carbon dioxide from a vantage point in orbit that will allow it to take readings on a scale never achieved before.

Technicians and engineers work with the OCO-2 spacecraft during processing inside a facility at Vandenberg Air Force Base in California.  (NASA/USAF 30th Space Wing)While ground stations have been monitoring carbon dioxide concentrations, OCO-2 will be the first spacecraft to conduct a global-scale reading over several seasons. The spacecraft is expected to produce detailed readings to provide regional sources of carbon dioxide as well as sinks for the greenhouse gas.

“There’s quite a lot of urgency to see what we can get from a satellite like OCO-2,” said David Crisp, the science team lead for the mission.

The spacecraft flew into orbit aboard a United Launch Alliance Delta II rocket launched from Vandenberg Air Force Base in California. The July 2 liftoff came at 5:56 a.m. Eastern time, 2:56 Pacific time. The hexagonal spacecraft is about 6 feet long and 3 feet in diameter and weighs 985 pounds. The Delta II first stage’s single liquid-fueled engine ignited moments before the three solid-fueled boosters roared to life to catapult the rocket and spacecraft off the pad toward space.

Continue reading